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It is an ever-growing challenge to develop nanodevices for controlling energy transport. An open question is
whether we can create and control heat current at strict zero thermal bias, and if yes, how to do it. In this paper,
we demonstrate that a nonlinear asymmetric system, when pushed out of equilibrium, can produce heat current
in the absence of a thermal bias. The emergence and control of heat current over a broad range of parameters
are studied. Our results reveal the following three necessary conditions: nonequilibrium source, symmetry
breaking, and nonlinearity. We also demonstrate that when heat baths are correlated, symmetry breaking is
sufficient to generate heat current.
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Understanding heat transfer at the molecular level is of
fundamental and practical importance �1�. Recent years have
witnessed a fast development in the emerging field of
phononics �2�, wherein phonons, rather than an annoyance,
can be used to carry and process information. To manipulate
and control phonon transport �heat current� on the molecular
level, various thermal devices �2,3� have been proposed. On
the other hand, experimental works such as thermal rectifier
�4� and nanotube phonon waveguide �5� have been carried
out. These theoretical and experimental works render the
heat current to be controlled as flexibly as electric current in
a foreseeable future.

Heat transfers spontaneously from a high temperature to a
low one; thus, the control of heat current has been so far
based on the control of the temperature gradient. However, a
large temperature gradient is essentially difficult to maintain
over small distance in practice especially at nanoscale. Con-
sequently, a natural question is raised: can we create and
control heat current in the absence of �or against� thermal
bias at nanoscale; if yes, then how do we do that?

Inspired by ideas from Brownian motors �6�, originally
devised for particle transport, a few studies have revealed the
possibility of pumping heat against thermal gradients at
nanoscale �7–10�. A molecular model with modulated energy
levels has been found to perform the heat pumping operation
�8�. While the microscopic oscillator system, though built on
the similar principles, fails to perform the pumping �9�. Thus,
it is still not clear what the requirements are for the system to
show such functional effect. In this paper, we attempt to
answer this following important question: how do we create
and control heat current at strict zero thermal bias?

It is noted that some interesting works reveal that nonzero
heat current survives when one bath temperature is driven
but with equal average �but different at any instant� to the
other bath temperature �10�. However, this reported behavior
can be understood through the Landauer formula for the heat
current �11�: J=�d��T������� ,TL�−��� ,TR��, where T���

is the transmission coefficient and ��� ,TS� is the Bose-
Einstein distribution, where the index S stands for L or R.
Considering the temperatures TL/R are driven around the
same average T0, a Taylor expansion gives ��� ,TL�
−��� ,TR������ ,T0��TL�t�−TR�t��+���TL�t�−TR�t��2 /2.
After the periodic average, the first term vanishes while the
second order survives which produces the nonzero current.

Therefore, in a stark contract to the above proposals, we
keep strict zero thermal bias at every instant through our
studies. This seems to be a small step, but it is a revolution-
ary one and has a completely different physics. It is under
this strict zero thermal bias that our results uncover these
three following conditions for the emergence of heat current
at zero thermal bias: nonequilibrium source, symmetry
breaking, and nonlinearity. Moreover, our simulation and
analytic results reveal a phenomenon that symmetry breaking
is already sufficient, if the two heat baths are correlated.

Our system consists of two segment Frenkel-Kontorova
�FK� chains �12,13� coupled together by a harmonic spring
with constant strength kint as depicted in Fig. 1. The Hamil-
tonian can be written as H=HL+ �kint /2��qNL,L−q1,R�2+HR,
where the Hamiltonian of each FK segment reads HS

=�i=1
NS �pi,S

2 /2m�+ �kS /2��qi,S−qi+1,S�2− �VS / �2��2�
cos�2�qi,S /a�. S stands for L or R, which represents the left
or right segment with the same length. qi,S denotes the dis-
placement from the equilibrium position for the ith atom in
segment S and pi,S the corresponding momentum. a is the
lattice constant. kS and VS are the spring constant and the
strength of the on-site potential of segment S. Two isother-
mal baths contacted with two ends are simulated by Lange-
vin reservoirs with zero mean and variance ��1/N�t��1/N�t��	
=2�kBTS��t− t��, where � is the system-bath coupling
strength.

One question of interest is whether, due to the spatial
asymmetry of the system, the thermal fluctuation in heat
baths can induce a net heat current in a given direction. We
argue that it is impossible. The situation would be a perpetual
machine of the second kind extracting useful work out of
ambient thermal reservoirs of vast energy surrounding us.
Unfortunately, the second law of thermodynamics rules out
the hiding place of the Maxwell demon, no matter how smart
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you design the system. It seems that any design to generate a
heat current without thermal bias is foolish and even a
quackery in the face of the second law. However, the second
law works at thermal equilibrium only.

In this paper, we drive the system out of equilibrium by
periodically oscillating two isothermal baths simultaneously,
as TL�t�=TR�t�=T0+	T sgn�sin �t�, where T0 is the refer-
ence temperature. Under the time-varying heat baths, in the
long-time limit, the local temperature of site i is time peri-
odic, namely, Ti�t�=mq̇i

2�t� /kB=Ti�t+2� /��. Similarly, the
time-dependent local heat current has the same periodicity:
Ji�t�=kq̇i�t��qi�t�−qi+1�t��=Ji�t+2� /��. Therefore, within
one period t� �0,2� /��, we can define the cyclic local heat
current averaged over the ensemble of periods after the tran-

sient time: J̄i�t�= 1
n�k=1

n Ji�t+2k� /�� �n is the number of pe-

riods� as well as the cyclic local temperature T̄i�t�
= 1

n�k=1
n Ti�t+2k� /��. Thus, the net heat current and the ef-

fective local temperature read J= �
2��0

2�/�J̄i�t�dt and Ti

= �
2��0

2�/�T̄i�t�dt, which are the same as the long-time aver-
age.

For convenience of numerical calculations, we use dimen-
sionless parameters by measuring positions in units of �a�,
momenta in units of �a�mkR�1/2�, spring constants in units of
�kR�, frequencies in units of ��kR /m�1/2�, and temperatures in
units of �a2kR /kB�. A fixed boundary condition is applied and
the equation of motion is integrated by the symplectic veloc-
ity Verlet algorithm with a time step of 0.005 for a suffi-
ciently long time to guarantee the nonequilibrium stably pe-
riodic states.

By adjusting the driving frequency � of the two isother-
mal baths simultaneously, we obtain a nonzero heat current,
which can be maximized at a moderate �, as shown in Fig.
2�a�. It is intuitive that the heat current vanishes at both high
and low frequency regimes. In the fast-oscillating limit �
→
, thermal baths are driven so fast that two ends of the
lattice cannot respond accordingly. The system only feels the
same time-averaged temperature T0 at the ends, which yields
J→0. In the adiabatic limit �→0, the system reduces to its
equilibrium counterpart without thermal gradients so that J
→0. The emergence of heat current happens only when two
segments of the system respond differently.

The J̄i�t� pattern at the optimized frequency is shown in
Fig. 2�b�. At the first half driving period with positive tem-
perature variation, the heat transports from the two ends to
the central part. While at the second half driving period with

negative temperature variation, the direction of heat current
reverses from the central part to the two ends. Eventually, the
net heat current emerges due to the asymmetry of heat con-
duction resulting from the asymmetrical segment structure.
Moreover, we illustrate the Ti profile in Fig. 2�c�. It indicates
that more energies are cumulated at the left segment part
which in turn induces the net heat current from left to right
although two heat baths hold the same temperature. As we
mentioned, the emergence of heat current here does not
break down the second law of thermodynamics since the
system is pushed out of equilibrium. The only nonequilib-
rium source driving the heat current is the oscillating tem-
perature TL�t� and TR�t� other than the thermal gradients.
This phenomenon is somehow similar to that resonance in
the particle current observed in the temperature ratchet �14�.

The reference temperature T0 is a very important param-
eter since thermal conductivity is generally temperature de-
pendent in many nonlinear lattices �15�. In the upper panel of
Fig. 3, we show that the direction of the net heat current
reverses as the reference temperature T0 increases and then
saturates at high temperatures. To gain more insights into this
reversal phenomenon, we depict the effective local tempera-

ture profile Ti and the cyclic local temperature pattern T̄i�t�
with two typical values of T0 in the middle and lower panels
of Fig. 3. It shows clearly that at low temperatures, energy
dissipates faster at the right segment with high thermal con-
ductivity which makes heat cumulated at the left part. Thus,
there is a net heat current flowing from left to right. While at
high temperatures, the scenario is reversed. In other words,
the heat current flows from the segment with lower conduc-
tivity to the higher one and the reversal of heat currents
results from the order reversal of thermal conductivities of
two FK segments as temperature increases. Further, we
check the amplitude tuning effect by varying 	T. As ex-
pected, it is found that the larger the 	T, the larger the mag-
nitude of J.

By varying N, we find that the maximum value of J in-
creases with system size and then saturates as shown in Fig.
4. Moreover, the optimum frequency �c decreases as N in-
creases. This “redshift” can be understood from thermal re-

FIG. 1. �Color online� Schematic of one-dimensional two seg-
ment FK lattice being coupled to two isothermal baths with oscil-
lating temperatures TL�t�=TR�t�.
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FIG. 2. �Color online� Frequency resonance effect. �a� J versus

�. �b� The cyclic local heat current J̄i�t� �see definition in context� is
illustrated at the optimal driving frequency �=2��10−3. �c� Ti

profile is shown for the same �. N=50, T0=0.09, 	T
=0.045, 20kint=5kL=kR=1, 5VL=VR=5, �=0.5, throughout the
paper, except specified.
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sponse time �10�. The heat conduction in the FK lattice fol-
lows Fourier’s law when the system size is larger enough
�13�, thus, the response time, �
N2, characterizing the time
scale for the energy to diffuse across the system. Therefore,
the characteristic frequency scales as �cN−2, which ex-
plains the redshift of the optimum frequency �c when N
increases. More interestingly, we find that when N is de-
creased, the direction of J can be reversed and then the mag-
nitude of J increases although negative. The optimum fre-
quency �c in this small size regime scales as N−1 instead of
the scaling N−2 of the normal diffusion as shown in Fig. 4�c�.
This is because at small N regime, the phonon transports
ballistically. Since the right segment is more rigid than the

left one �kR=5kL�, the energy transports faster in the right
part which induces J from right to left so as to reverse the
direction. In other words, the crossover from normal diffu-
sion to ballistic transport owing to the size reducing induces
the reversal of the net heat current.

In all simulations so far, two isothermal baths are inde-
pendent, since ��1�t��N�t��	=0. Now we introduce the non-
zero variance ��1�t��N�t��	=c��t− t�� to study the thermal
bath correlation effect. We find that the correlation effect is
significant only at small sizes �in which the energy transports
ballistically� while fading away at large sizes in which en-
ergy transports diffusively, as shown in Fig. 5�a�. When N
=8, we even obtain a nonzero heat current in the adiabatic
limit �→0. It implies that there may exist a “geometric
phase” in the dissipative and stochastic system �16� we used
here. The geometric phase results from the nonzero area en-
closed by periodic variation of parameters in parameter
space. Even when the driving is extremely slow, approximat-
ing to equilibrium state at every instant, this geometric
phase-induced heat current still survives. This is an interest-
ing topic deserving further investigation.

Moreover, in contrast to the nonlinear FK lattice, we find
surprisingly that, for a pure harmonic system, even in the
absence of external driving, and without thermal bias, the
heat current emerges when the two thermal baths are corre-
lated. To understand this correlation-induced heat current, we
formalize the heat conduction of harmonic systems by the
Rieder-Lebowitz-Lieb method �17� and have the steady-state
equation

Â · B̂ + B̂ · ÂT = D̂ , �1�

where Â= � 0 −Î

L̂ �̂
�, D̂= � 0 0

0 Ĉ
�. Lij =�ij�mkim−kij is the Laplacian

matrix where kij denotes the spring constant between adja-
cent oscillator i and j. �in=�i�in, �n=1,N� is the dissipation
matrix. Cij =2�ikBTi��i1� j1+�iN� jN�+c��i1� jN+�iN� j1� and

the second term depicts the correlation effect. The solution B̂

of Eq. �1� has four blocks: B̂= �
B̂qq B̂qp

B̂qp
T B̂pp

�, where �B̂qp�ij
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FIG. 3. �Color online� Temperature tuning effect �upper panel�.
�=2��10−3. The middle and bottom panels show Ti profiles and

T̄i�t� patterns with T0=0.07 �a� and 0.16 �b�. At low temperature
case �a�, the left segment has lower conductivity which results in
slower heat dissipating. Thus, more energies cumulate at the left
part, making J from left to right. While at high temperature case �b�,
the right part has lower conductivity which induces the reversal of
J.

FIG. 4. �Color online� System size effect. J versus � with vari-
ous sizes N for two different reference temperatures T0: �a� 0.09; �b�
0.12, with 	T=T0 /2. �c� �c versus N indicates the ballistic trans-
port and the normal diffusion.

FIG. 5. �Color online� �a� Thermal bath correlation effect. c
=2�kBTS�t�. The upper �black� arrow marks J, without driving, un-
der correlated baths with N=8; while the bottom �red� arrow marks
J in the adiabatic limit, with the same condition. Their discrepancy
indicates the geometric phase induced heat current. �b� Correlation-
induced J versus N. Results are calculated from the analytic Eq. �1�
and are checked that they are the same as the simulation results.
	T=VL=VR=0, c=2�kBT0.

EMERGENCE AND CONTROL OF HEAT CURRENT FROM… PHYSICAL REVIEW E 81, 021111 �2010�

021111-3



= �qipj	 denotes the position-velocity correlation relating to J.
For two oscillator system, it is easy to obtain the explicit
solution of heat currents:

J =
kint��kL − kR�c + 2��TL − TR�kint�

�kL − kR�2 + 2�2�kL + kR� + 4�2kint + 4kint
2 . �2�

It shows clearly that even without thermal bias �TL=TR�, the
correlation c still can induce nonzero J in the asymmetry
harmonic chain �kL�kR�. This nontrivial correlation effect,
represented by the nonzero off-diagonal of Cij, is reminiscent
of the quantum coherence �18,19�, which provides the off-
equilibrium source to create heat currents. More interest-
ingly, we find that when N increases the correlation-induced
heat current oscillates and reverses its direction periodically
as shown in Fig. 5�b�.

In summary, we have demonstrated the emergence of heat
currents and their direction control in a FK lattice of two
segements without thermal bias. By periodically oscillating
two isothermal baths simultaneously, we can obtain a maxi-
mum heat current at an optimum driving frequency. The
resonance effect with respect to other parameters has been
studied systematically as well. We have found that the direc-
tion of the emerging heat current can be reversed by either
tuning the reference temperature or tuning the system size,
and the optimum frequency can be decreased by increasing
the system size. Our results reveal the following three nec-
essary conditions for the emergence of heat current without
thermal bias: �1� nonequilibrium source, which is induced by
the periodically oscillating baths although isothermal, and in
turn breaks the underlying detailed balance. Also, we can

periodically drive other parameters such as kint to generate
the nonequilibrium source so as to create heat current �not
shown�; �2� symmetry breaking, which results from the two
asymmetric segments construction defining a preferential di-
rectionality; �3� nonlinearity, which comes from the on-site
sinusoidal potential in the FK model. In fact, when VS=0, the
system reduces to an asymmetric harmonic chain and we find
that the heat current vanishes �not shown�. However, if the
correlation between two baths is introduced, symmetry
breaking is sufficient to create heat current.

We should point out that the model proposed here might
be realized experimentally. For a typical atom, a
1 Å, m

10−26–10−27 kg, which yields the frequency unit
��kR /m�1/2�
1013 s−1 and the temperature unit �a2kR /kB�

103–104 K. The typical value of T0=0.1 and �

10−4–10−5 corresponds to the physical temperature Tr

102–103 K and the physical frequency �r

102–103 MHz, which is in the ultrasonic and microwave
regimes. Thanks to the redshift effect, we are able to obtain
lower optimum driving frequencies in practice by enlarging
the system size. The thermal bath correlation might be imple-
mented by imposing some common external thermal noise or
introducing entanglements between two heat baths �19�. We
hope the present study will stimulate experimentalists to
search possible realizations and technological utilizations.
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